Diffusion tensor imaging analysis of optic radiation using readout-segmented echo-planar imaging
Journal ArticlePurpose
To investigate the diffusion tensor imaging parameters of the optic radiation and surrounding structures using the high-resolution readout-segmented diffusion tensor imaging method.
Materials and methods
Coronal readout-segmented diffusion tensor images were acquired in 15 healthy volunteers. On three slices of each image, eigenvalue 1, fractional anisotropy, radial diffusivity, apparent diffusion coefficient, and signal intensity on T2-weighted images were measured in the lateral inferior longitudinal fasciculus, external and internal layers of the optic radiation, and the tapetum within regions of interest delineated by two independent observers. Profile curve analysis of regions of interest across the optic radiation and surrounding structures was performed for a representative typical case.
Results
Significant differences in fractional anisotropy, radial diffusivity and apparent diffusion coefficient were observed between external and internal layers of the optic radiation, while there was no significant difference in eigenvalue 1. In fractional anisotropy maps, two low signal bands were observed between the inferior longitudinal fasciculus, the optic radiation and the tapetum. Profile curve analysis showed a minimum on the fractional anisotropy and eigenvalue 1 images and a maximum in the radial diffusivity image.
Conclusion
Readout-segmented diffusion tensor imaging revealed significant differences in the diffusion tensor imaging parameters between internal and external layers of the optic radiation.
TAHA M Mehemed, (12-2014), Surgical and Radiologic Anatomy: Springer Nature, 36
Visualization of Lenticulostriate Arteries at 3T: Optimization of Slice-selective Off-resonance Sinc Pulse–prepared TOF-MRA and Its Comparison with Flow-sensitive Black-blood MRA
Journal ArticleRationale and Objectives
To optimize visualization of lenticulostriate artery (LSA) by time-of-flight (TOF) magnetic resonance angiography (MRA) with slice-selective off-resonance sinc (SORS) saturation transfer contrast pulses and to compare capability of optimal TOF-MRA and flow-sensitive black-blood (FSBB) MRA to visualize the LSA at 3T.
Materials and Methods
This study was approved by the local ethics committee, and written informed consent was obtained from all the subjects. TOF-MRA was optimized in 20 subjects by comparing SORS pulses of different flip angles: 0, 400°, and 750°. Numbers of LSAs were counted. The optimal TOF-MRA was compared to FSBB-MRA in 21 subjects. Images were evaluated by the numbers and length of visualized LSAs.
Results
LSAs were significantly more visualized in TOF-MRA with SORS pulses of 400° than others (P < .003). When the optimal TOF-MRA was compared to FSBB-MRA, the visualization of LSA using FSBB (mean branch numbers 11.1, 95% confidence interval (CI) 10.0–12.1; mean total length 236 mm, 95% CI 210–263 mm) was significantly better than using TOF (4.7, 95% CI 4.1–5.3; 78 mm, 95% CI 67–89 mm) for both numbers and length of the LSA (P < .0001).
Conclusions
LSA visualization was best with 400° SORS pulses for TOF-MRA but FSBB-MRA was better than TOF-MRA, which indicates its clinical potential to investigate the LSA on a 3T magnetic resonance imaging.
TAHA M Mehemed, (06-2014), Academic Radiology: Elsevier, 21
Dynamic oxygen-enhanced MRI of cerebrospinal fluid
Journal ArticleOxygen causes an increase in the longitudinal relaxation rate of tissues through its T1-shortening effect owing to its paramagnetic properties. Due to such effects, MRI has been used to study oxygen-related signal intensity changes in various body parts including cerebrospinal fluid (CSF) space. Oxygen enhancement of CSF has been mainly studied using MRI sequences with relatively longer time resolution such as FLAIR, and T1 value calculation. In this study, fifteen healthy volunteers were scanned using fast advanced spin echo MRI sequence with and without inversion recovery pulse in order to dynamically track oxygen enhancement of CSF. We also focused on the differences of oxygen enhancement at sulcal and ventricular CSF. Our results revealed that CSF signal after administration of oxygen shows rapid signal increase in both sulcal CSF and ventricular CSF on both sequences, with statistically significant predominant increase in sulcal CSF compared with ventricular CSF. CSF is traditionally thought to mainly form from the choroid plexus in the ventricles and is absorbed at the arachnoid villi, however, it is also believed that cerebral arterioles contribute to the production and absorption of CSF, and controversy remains in terms of the precise mechanism. Our results demonstrated rapid oxygen enhancement in sulcal CSF, which may suggest inhaled oxygen may diffuse into sulcal CSF space rapidly probably due to the abundance of pial arterioles on the brain sulci.
Taha M Mehemed, (06-2014), PLoS One: Public Library of Science, 9
Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart
Journal ArticleMercury exposure is associated with increased risk of cardiovascular disease and profound cardiotoxicity. However, the correlation between Hg(2+)-mediated toxicity and alteration in cardiac cytochrome P450s (Cyp) and their dependent arachidonic acid metabolites has never been investigated. Therefore, we investigated the effect of acute mercury toxicity on the expression of Cyp-epoxygenases and Cyp-ω-hydroxylases and their associated arachidonic acid metabolites in mice hearts. In addition, we examined the expression and activity of soluble epoxide hydrolase (sEH) as a key player in arachidonic acid metabolism pathway. Mercury toxicity was induced by a single intraperitoneal injection (IP) of 2.5 mg/kg of mercuric chloride (HgCl₂). Our results showed that mercury treatment caused a significant induction of the cardiac hypertrophy markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP); in addition to Cyp1a1, Cyp1b1, Cyp2b9, Cyp2b10, Cyp2b19, Cyp2c29, Cyp2c38, Cyp4a10, Cyp4a12, Cyp4a14, Cyp4f13, Cyp4f15, Cyp4f16 and Cyp4f18 gene expression. Moreover, Hg(2+) significantly increased sEH protein expression and activity levels in hearts of mercury-treated mice, with a consequent decrease in 14,15-, and 11,12-epoxyeicosatrienoic acids (EETs) levels. Whereas the formation of 14,15-, 11,12-, 8,9-dihydroxyeicosatrienoic acids (DHETs) was significantly increased. In conclusion, acute Hg(2+) toxicity modulates the expression of several Cyp and sEH enzymes with a consequent decrease in the cardioprotective EETs which could represent a novel mechanism by which mercury causes progressive cardiotoxicity. Furthermore, inhibiting sEH might represent a novel therapeutic approach to prevent Hg(2+)-induced hypertrophy.
Issa Emhemmed Alemyani Amara, (04-2014), Toxicology Letters: Elsevier, 219
Fat-water interface on susceptibility-weighted imaging and gradient-echo imaging: comparison of phantoms to intracranial lipomas
Journal ArticleOBJECTIVE. In a clinical setting, lipoma can sometime show low signal intensity on susceptibility-weighted imaging (SWI) mimicking hemorrhage. The purpose of this study was to evaluate the fat-water interface chemical-shift artifacts between SWI and T2*-weighted imaging with a phantom study and evaluate SWI in lipoma cases.
MATERIALS AND METHODS. SWI, magnitude, high-pass filtered phase, and T2*-weighted imaging of a lard-water phantom were evaluated in the in-phase, out-of phase, and standard partially out-of-phase TE settings used for clinical 3-T SWI (19.7, 20.9, and 20.0 ms, respectively) to identify the most prominent fat-water interface low signal. SWI of five cases of CNS lipoma were retrospectively evaluated by two neuroradiologists.
RESULTS. TE at 19.7 ms (in-phase) showed the minimum fat-water interface low signal in the phase-encoding direction on magnitude, high-pass filtered phase, and SWI. TE at 20.9 ms (out-of-phase) showed the maximum fat-water interface in the phase-encoding direction on magnitude, high-pass filtered phase, and SWI. TE at 20.0 ms (partially out-of-phase) showed more fat-water interface low signal on SWI than on T2*-weighted imaging, especially in the phase-encoding direction. All lipomas in the five patients showed high signal intensity with surrounding peripheral dark rim on SWI.
CONCLUSION. Fat-water interface is more prominent on the standard TE setting used for clinical SWI (20.0 ms) than that of T2*-weighted imaging and shows a characteristic surrounding peripheral low-signal-intensity rim in lipoma. Knowing the fat-water appearance on SWI is important to avoid misinterpreting intracranial lipomas as hemorrhages.
TAHA M. Mehemed, (09-2013), American Journal of Roentgenology: American Roentgen Ray Society, 210
.Modulation of cytochrome P450 1 (Cyp1) by vanadium in hepatic tissue and isolated hepatocyte of C57BL/6 mice
Journal ArticleThe objective of the current study was to investigate the effect of vanadium (V(5+)) on Cyp1 expression and activity in C57BL/6 mice liver and isolated hepatocytes. For this purpose, C57BL6 mice were injected intraperitoneally with V(5+) (5 mg/kg) in the absence and presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (15 μg/kg) for 6 and 24 h. Furthermore, isolated hepatocytes from C57BL6 mice were treated with V(5+) (5, 10, and 20 μM) in the absence and presence of TCDD (1 nM) for 3, 6, 12, and 24 h. In vivo, V(5+) alone did not significantly alter Cyp1a1, Cyp1a2, or Cyp1b1 mRNA, protein, or catalytic activity levels. Upon co-exposure to V(5+) and TCDD, V(5+) significantly potentiated the TCDD-mediated induction of the Cyp1a1, Cyp1a2, and Cyp1b1 mRNA, protein, and catalytic activity levels at 24 h. In vitro, V(5+) decreased the TCDD-mediated induction of Cyp1a1 mRNA, protein, and catalytic activity levels. Furthermore, V(5+) significantly inhibited the TCDD-induced AhR-dependent luciferase activity. V(5+) also increased serum hemoglobin (Hb) levels in animals treated for 24 h. Upon treatment of isolated hepatocytes with Hb alone or in the presence of TCDD, there was an increase in the AhR-dependent luciferase activity. When isolated hepatocytes were treated for 2 h with V(5+) in the presence of TCDD, followed by replacement of the medium with new medium containing Hb, there was further potentiation to the TCDD-mediated effect. The present study demonstrates that there is a differential modulation of Cyp1a1 by V(5+) in C57BL/6 mice livers and isolated hepatocytes and demonstrates Hb as an in vivo specific modulator.
Issa Emhemmed Alemyani Amara, (08-2013), Archives of Toxicology: SPRINGER LINK, 87
Posttranslational mechanisms modulating the expression of the cytochrome P450 1A1 gene by methylmercury in HepG2 cells: a role of heme oxygenase-1
Journal ArticleRecently we demonstrated the ability of mercuric chloride (Hg(2+)) in human hepatoma HepG2 cells to significantly decrease the TCDD-mediated induction of Cytochrome P450 1A1 (CYP1A1) mRNA, protein, and catalytic activity levels. In this study we investigated the effect of methylmercury (MeHg) on CYP1A1 in HepG2 cells. For this purpose, cells were co-exposed to MeHg and TCDD and the expression of CYP1A1 mRNA, protein, and catalytic activity levels were determined. Our results showed that MeHg did not alter the TCDD-mediated induction of CYP1A1 mRNA, or protein levels; however it was able to significantly decrease CYP1A1 catalytic activity levels in a concentration-dependent manner. Importantly, this inhibition was specific to CYP1A1and was not radiated to other aryl hydrocarbon receptor (AhR)-regulated genes, as MeHg induced NAD(P)H:quinone oxidoreductase 1 mRNA and protein levels. Mechanistically, the inhibitory effect of MeHg on the induction of CYP1A1 coincided with an increase in heme oxygenase-1 (HO-1) mRNA levels. Furthermore, the inhibition of HO-1 activity, by tin mesoporphyrin, caused a complete restoration of MeHg-mediated inhibition of CYP1A1 activity, induced by TCDD. In addition, transfection of HepG2 cells with siRNA targeting the human HO-1 gene reversed the MeHg-mediated inhibition of TCDD-induced CYP1A1. In conclusion, this study demonstrated that MeHg inhibited the TCDD-mediated induction of CYP1A1 through a posttranslational mechanism and confirms the role of HO-1 in a MeHg-mediated effect.
Issa Emhemmed Alemyani Amara, (06-2013), Toxicology Letters: Elsevier, 219
High-pass-filtered phase image: left-versus right-handed MR imaging systems
Journal ArticleWe read with interest the article entitled “Detection of Intratumoral Calcification in Oligodendrogliomas by Susceptibility-Weighted MR Imaging” and would like to comment on the appearance of calcification on the high-pass-filtered phase images.
The authors reported that the paramagnetic (authors wrote “diamagnetic”) hemorrhagic component of the tumor would cause a negative phase shift and appear as dark signal on the high-pass-filtered phase images, while the diamagnetic (authors wrote “paramagnetic”) intratumoral calcifications would cause an opposite positive phase shift and appear as bright signal on the high-pass-filtered phase images. This description is true, but only in the case of right-handed MR imaging systems, while in left-handed MR imaging systems, the complete opposite signal would be seen: Paramagnetic substances would appear bright, while diamagnetic substances would appear dark.
In Figs 2D and 3D of the above-mentioned article, the high-pass-filtered phase images are those of a left-handed MR imaging system, evident by the bright signal of the veins (paramagnetic deoxyhemoglobin).
The article showed that high-pass-filtered phase images can depict intratumoral calcification in oligodendrogliomas better than conventional MR images; this finding has been reported before. Understanding the contrast appearance of high-pass-filtered phase images on left-handed versus right-handed MR imaging systems would make distinguishing diamagnetic calcification from paramagnetic hemorrhage a much easier task and prevent any possible confusion.
TAHA M Mehemed, (06-2013), ِAmerican Journal of Neuroradiology: American Journal of Neuroradiology, 37
Differential modulation of cytochrome P450 1a1 by arsenite in vivo and in vitro in C57BL/6 mice
Journal ArticleHeavy metals, typified by arsenite (As(III)), have been implicated in altering the carcinogenicity of aryl hydrocarbon receptor (AhR) ligands, typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), by modulating the induction of the Cyp1a1 enzyme, but the mechanism remains unresolved. In this study, the effects of As(III) on Cyp1a1 expression and activity were investigated in C57BL/6 mouse livers and isolated hepatocytes. For this purpose, C57BL/6 mice were injected intraperitoneally with As(III) (12.5 mg/kg) in the absence and presence of TCDD (15 μg/kg) for 6 and 24 h. Furthermore, isolated hepatocytes from C57BL/6 mice were treated with As(III) (1, 5, and 10 μM) in the absence and presence of TCDD (1 nM) for 3, 6, 12, and 24 h. At the in vivo level, As(III) decreased the TCDD-mediated induction of Cyp1a1 mRNA at 6h while potentiating its mRNA, protein, and catalytic activity levels at 24 h. At the in vitro level, As(III) decreased the TCDD-mediated induction of Cyp1a1 mRNA in a concentration- and time-dependent manner. Moreover, As(III) decreased the TCDD-mediated induction of Cyp1a1 protein and catalytic activity levels at 24 h. Interestingly, As(III) increased the serum hemoglobin (Hb) levels in animals treated for 24 h. Upon treatment of isolated hepatocytes with Hb alone, there was an increase in the nuclear accumulation of AhR and AhR-dependent luciferase activity. Furthermore, Hb potentiated the TCDD-induced AhR-dependent luciferase activity. Importantly, when isolated hepatocytes were treated for 5h with As(III) in the presence of TCDD and the medium was then replaced with new medium containing Hb, there was potentiation of the TCDD-mediated effect. Taken together, these results demonstrate for the first time that there is a differential modulation of the TCDD-mediated induction of Cyp1a1 by As(III) in C57BL/6 mouse livers and isolated hepatocytes. Thus, this study implicates Hb as an in vivo-specific modulator.
Issa Emhemmed Alemyani Amara, (05-2013), Free Radical Biology and Medicine: Elsevier, 58
Mercury modulates the cytochrome P450 1a1, 1a2 and 1b1 in C57BL/6J mice: in vivo and in vitro studies, Toxicol
Journal ArticleIn the current study C57BL/6J mice were injected intraperitoneally with Hg(2+) in the absence and presence of TCDD. After 6 and 24h the liver was harvested and the expression of Cyps was determined. In vitro, isolated hepatocytes were incubated with TCDD in the presence and absence of Hg(2+). At the in vivo level, Hg(2+) significantly decreased the TCDD-mediated induction of Cyps at 6h while potentiating their levels at 24h. In vitro, Hg(2+) significantly inhibited the TCDD-mediated induction of Cyp1a1 in a concentration- and time-dependent manner. Interestingly, Hg(2+) increased the serum hemoglobin (Hb) levels in mice treated for 24h. Upon treatment of isolated hepatocytes with Hb alone, there was an increase in the AhR-dependent luciferase activity with a subsequent increase in Cyp1a1 protein and catalytic activity levels. Importantly, when hepatocytes were treated for 2h with Hg(2+) in the presence of TCDD, then the medium was replaced with new medium containing Hb, there was potentiation of the TCDD-mediated effect. In addition, Hg(2+) increased heme oxygenase-1 (HO-1) mRNA, which coincided with a decrease in the Cyp1a1 activity level. When the competitive HO-1 inhibitor, tin mesoporphyrin was applied to the hepatocytes there was a partial restoration of Hg(2+)-mediated inhibition of Cyp1a1 activity. In conclusion, we demonstrate for the first time that there is a differential modulation of the TCDD-mediated induction of Cyp1a1 by Hg(2+) in C57BL/6J mice livers and isolated hepatocytes. Moreover, this study implicates Hb as an in vivo specific modulator of Cyp1 family.
Issa Emhemmed Alemyani Amara, (02-2013), Toxicology and Applied Pharmacology: Elsevier, 266